

Content available at: https://www.ipinnovative.com/open-access-journals

IP Indian Journal of Orthodontics and Dentofacial Research

NOING BARTON NOING

Journal homepage: https://ijodr.com/

Short Communication

Crimplock: A reinforced crimpable hook assembled with coil spring for efficient distalization

Suresh Kundalikrao Kangane¹, Siddhant Ramesh Jadhav*¹, Pravinkumar Sharnappa Maroore¹, Yatishkumar Satyanarayan Joshi¹, Kirti Govinda Sonawane¹, Gajanan Babruwan Waghmode¹, Manjusha Manohar Patil¹

Dept. of Orthodontics and Dentofacial Orthopaedics, Maharashtra Institute of Dental Sciences & Research Dental College, Latur, Maharashtra, India

Abstract

Upper molar distalization is a crucial component of non-extraction orthodontic protocols for correcting Class II malocclusions or achieving space for anterior alignment. This article presents a novel method utilizing a crimpable hook on a 0.019×0.025 stainless steel (SS) archwire, reinforced with an L-shaped auxiliary wire welded to both the crimpable hook and base archwire. This configuration ensures stability, resists mesial drift of the hook under coil spring pressure, and enhances comfort by eliminating the need for auxiliary distalizing hooks. Anterior teeth are consolidated with ligature ties to neutralize reciprocal forces, allowing for isolated molar movement. This simple, efficient, and comfortable method offers a fail-safe mechanism that can be integrated easily into routine orthodontic mechanics.

Keywords: Molar distalization, Reinforced hook design, Anchorage control, Coil spring distalization

Received: 05-08-2025; Accepted: 02-09-2025; Available Online: 15-10-2025

This is an Open Access (OA) journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

For reprints contact: reprint@ipinnovative.com

1. Introduction

In modern orthodontic practice, upper molar distalization plays a pivotal role in non-extraction treatment protocols, especially in the correction of Class II malocclusions and for regaining space lost due to mesial drift of molars or anterior crowding. Achieving molar movement distally without unwanted side effects on anterior teeth remains a mechanical challenge. Traditional methods for molar distalization, such as headgear, distal jets, Pendulum appliances, and minimplants, although effective, often suffer from limitations including patient compliance, mucosal irritation, increased cost, or mechanical complexity.^{1,2,3}

The use of open coil springs on stainless steel wires has become increasingly popular due to their ability to deliver controlled and continuous force for molar distalization. However, securing coil springs often requires auxiliary hooks soldered or prefabricated onto the archwire, which can shift under force or irritate soft tissues. To address these drawbacks, crimpable hooks when positioned correctly, they provide efficient anchorage for coil springs.

One clinical limitation of conventional crimpable hooks is the tendency for them to migrate mesially under the compressive forces generated by coil springs. This can lead to anchorage loss and reduced efficiency in molar distalization. To combat this, reinforcing the hook's position using auxiliary wire welding offers a simple yet robust solution. The integration of a welded L-shaped segment anchored anteriorly and parallel to the base wire creates a fail-safe mechanism that not only stabilizes the hook but also enhances force directionality.⁶

Additionally, one of the common side effects of molar distalization is the reciprocal mesial movement of anterior teeth if anchorage is not adequately reinforced. This can lead to space loss and measilization of anterior segment. Consolidating the anterior teeth using stainless steel ligatures is a well-accepted anchorage reinforcement strategy, ensuring that the full reactive force is directed toward the molar.⁷

This article presents a novel clinical design that combines the mechanical advantage of crimpable hooks, welded

*Corresponding author: Siddhant Ramesh Jadhav Email: siddhant.jadhav14@gmail.com support wires, and anterior consolidation to deliver efficient, comfortable, and controlled upper molar distalization without the need for additional distal hooks or miniscrew anchorage. This technique is practical, low-cost, and easily reproducible in a routine clinical setting.^{8,9}

2. Materials (Figure 1)

- 1. 0.019×0.025 -inch stainless steel wire.
- 2. Open coil spring.
- 3. Crimpable hook.
- 4. Wire Cutter.
- 5. Bird beak plier.
- 6. Spot welder or soldering unit.

Figure 1: 0.019×0.025 -inch stainless steel wire, open coil spring, crimpable hook, wire cutter, bird beak plier, spot welder or soldering unit

3. Fabrication Steps

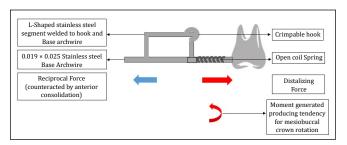
1. **Base setup:** On a preformed 0.019 × 0.025-inch SS archwire, position a crimpable hook just distal to the first premolar region. Crimp it firmly using a bird beak plier. (**Figure 2**)

Figure 2: Crimpable hook securely positioned on a 0.019×0.025 -inch stainless steel archwire

 L-shaped wire segment preparation: Form an L-shaped auxiliary segment from SS wire. The long arm runs parallel and adjacent to the main archwire from the premolar to the canine region. The short arm extends apically to contact the base archwire distal to the canine bracket. (Figure 3)

Figure 3: L-Shaped wire segment

3. **Welding:** The short arm of the L-shaped auxiliary is spot-welded to the base archwire distal to the canine bracket, ensuring it is rigidly fixed and not free-floating. This weld, together with anterior consolidation, prevents any displacement under coil spring forces. Spot weld the long arm of the L-segment to the crimpable hook. (**Figure 4**)


Figure 4: L-shaped reinforcement wire segment welded to the base archwire and crimpable hook for enhanced stability.

- 4. **Activation:** Place an open coil spring between the reinforced crimpable hook and the molar bracket to generate distalizing force.
- Anchorage preparation: Consolidate the teeth anterior to the welded section (canine to central incisor) using SS ligature wires to act as a solid anchorage unit and prevent mesial movement.

This design also allows a more comfortable patient experience by eliminating additional intraoral hooks that may irritate the mucosa. (Figure 5). This design also allows a more comfortable patient experience by eliminating additional intraoral hooks that may irritate the mucosa.

Figure 5: Final assembly demonstrating complete appliance with open coil spring and elimination of auxiliary hooks to enhance patient comfort

Figure 6: Force vectors and moment generated during molar distalization using the Crimplock appliance

4. Force System of Crimplock Appliance

The open coil spring exerts a distalizing force vector on the molar and a reciprocal mesial force on the anterior segment. As the line of action passes occlusal and buccal to the molar's centre of resistance, a moment is generated that tends to rotate the crown mesiobucally. Consolidation of anteriors and reinforcement with the L-shaped auxiliary help control unwanted reciprocal effects. (Figure 6)

4.1. Advantages

- 1. **Minimally invasive:** Avoids surgical procedures and bone-supported anchorage, offering a simpler, patient-friendly alternative
- Reinforced control: Welded L-shaped support prevents mesial drift of the crimpable hook under coil spring pressure.
- 3. **Fail-safe design:** Acts as a mechanical stop in case of hook displacement, maintaining treatment stability.
- 4. **Anchorage optimization:** Consolidated anterior teeth negate reciprocal forces, avoiding mesial movement without needing mini implants.
- 5. **Simple chairside fabrication:** Easily integrated into existing archwire using conventional tools and materials.
- Cost-effective: Utilizes standard orthodontic components, eliminating the need for specialized anchorage systems.

4.2. Limitations

While the proposed design demonstrates clear mechanical advantages and practical benefits, it is important to acknowledge several limitations:

- 1. Lack of extensive clinical validation: This technique has not yet been extensively tested across diverse patient populations or long-term treatment scenarios. Future controlled clinical studies are necessary to validate its effectiveness and generalizability.
- Operator dependence: The precision of fabrication particularly the welding of the L-shaped wire segment requires a degree of clinical skill. Variability in execution may influence outcomes and stability.
- 3. Applicability restricted to specific arch forms and cases: The technique may not be suitable for patients with atypical arch forms, significant crowding, or periodontal limitations that restrict space for auxiliary wire welding. The open coil spring exerts a force vector that can cause mesiobuccal crown rotation of the molars. This type of distalising force is beneficial in class II cases because of molar rotation. Mesiobuccal crown rotation will help in correcting class II molar relationship into class I.
- 4. **No comparative data with existing distalization appliances:** While the technique appears mechanically sound, comparative studies against commonly used systems like pendulum appliances or mini-implant-supported distalizers are lacking.
- 5. This article focuses on the mechanical design and biomechanical rationale of the Crimplock system. While clinical photographs and cephalometric evidence would further validate the technique, they are not included here as the cases are still under active treatment.

5. Conclusion

This reinforced hook-based design presents a reliable, simple, and patient-friendly solution for upper molar distalization. Compared to the Pendulum appliance, which relies on palatal acrylic and delivers greater distal tipping, the Crimplock system is simpler, does not require palatal coverage, and integrates seamlessly into an existing archwire. Unlike distal jets or mini-implant-supported distalizers, it avoids laboratory work, additional cost, or invasive procedure, while still providing distal molar movement. The crimpable hook, when supported by a welded L-shaped segment, remains stable under coil spring pressure. The anterior consolidation prevents reciprocal mesial movement of anterior teeth, focusing the force vector on the molars. This innovation not only increases mechanical efficiency but also enhances patient comfort and compliance. Further clinical trials may provide quantitative validation of its effectiveness across various treatment protocols.

6. Source of Funding

None.

7. Conflict of Interest

None.

References

- Papadopoulos MA. Efficient distalization of maxillary molars with temporary anchorage devices for the treatment of class II malocclusion. *Turk J Orthod.* 2020;33(3):197–201. doi: 10.5152/ TurkJOrthod.2020.20064.
- Byloff FK, Darendeliler MA. Distal molar movement using the pendulum appliance. Part 1: clinical and radiological evaluation. *Angle Orthod.* 1997;67(3):249–260.
- Soheilifar S, Mohebi S, Ameli N. Maxillary molar distalization using conventional versus skeletal anchorage devices: A systematic review and meta-analysis. *Int Orthod.* 2019;17(3): 415–424. doi: 10.1016/j.ortho.2019.06.002.
- Ludwig B, Glasl B, Kinzinger GS, Lietz T, Lisson JA. Anatomical guidelines for miniscrew insertion: vestibular interradicular sites. J Clin Orthod. 2011;45(3):165–173.

- Papadopoulos MA. Efficient distalization of maxillary molars with temporary anchorage devices for the treatment of class II malocclusion. *Turk J Orthod.* 2020; 33(3): 197–201. doi: 10.5152/ TurkJOrthod.2020.20064.
- Melsen B, Bosch C. Different approaches to anchorage: A survey and an evaluation. *Angle Orthod*. 1997; 67(1):23–30. doi: 10.1043/0003-3219(1997)067<0023:DATAAS>2.3.CO;2.
- Kuhlberg AJ, Burstone CJ. T-loop position and anchorage control. *Am J Orthod Dentofacial Orthop*. 1997;112(1):12–8. doi: 10.1016/s0889-5406(97)70268-3.
- Bussick TJ, McNamara JA Jr. Dentoalveolar and skeletal changes associated with the pendulum appliance. Am J Orthod Dentofacial Orthop. 2000;117(3), 333–43. doi: 10.1016/s0889-5406(00)70238-1.
- Papadopoulos MA. Efficient distalization of maxillary molars with temporary anchorage devices for the Treatment of Class II Malocclusion. *Turk J Orthod*. 2020;33(3): 197–201. doi: 10.5152/ TurkJOrthod.2020.20064.

Cite this article: Kangane SK, Jadhav SR, Maroore PS, Joshi YS, Sonawane KG, Waghmode GB, Patil MM. Crimplock: A reinforced crimpable hook assembled with coil spring for efficient distalization. *IP Indian J Orthod Dentofacial Res.* 2025;11(3):251–254.